资    源
  • 资    源
  • 文    章
  • 地    图

当前位置:查字典地理网 >地理百科 >冰盖

冰盖
查字典地理网 来源|

地理百科

  •   大陆冰盖 (continental ice sheet) 是指长期覆盖在陆地上的面积大于5万平方千米的冰体。自边缘向中心隆起、规模如南极或格陵兰的盾形冰体。又称大陆冰川,简称冰盖。

  •   南极冰盖

      始于渐新世末。至少在距今500万年前就达到目前规模。冰盖绝大部分分布在南极圈内,直径约4500千米,面积约1398万平方千米,约占南极大陆面积的98%。平均厚度为2000~2500米,最大厚度达 4000 多米。冰盖的总体积约 2450 万立方千米,占世界陆地冰量的 90%,淡水总量的70%。冰盖外围发育有面积约为 150多万平方千米的陆缘冰,主要有罗斯冰架、菲尔希纳冰架和埃默里冰架等。在内陆冰盖的补给和推动下,冰架边缘不断崩坍出大量的平顶冰山 。

      南极冰盖由东、 西两部分合成,

      冰盖5以横断南极山脉为界。南极冰盖属于冷冰川。特点是温度低、积累量和消融量小、成冰作用缓长,如高原站(南纬 79°15′,东经 40°30′)成冰过程需3500年,因此相对比较稳定。南极冰盖是地球上最干寒的地区,高原内部的年平均气温低达-55℃ ,年降水量小于50毫米,冰面终年不化,成冰过程极慢。冰盖边缘的年平均温度为-10~-15℃,最高、最低气温分别为10℃和-40℃,年降水量 200~500 毫米,夏季(11月~翌年2月)雪冰消融强烈,消融带的海拔高度在1000~1400米以下,雪线高度界于0~100米之间。因此,南极冰盖内陆是典型的极地大陆性冰川,沿海地带和南极半岛则具有极地海洋性冰川特性。南极冰盖是地球上最大的冰库和冷源,其形成与发展对全球气候变化、海面升降和人类生活有重大影响。如果南极冰盖全部融化,世界洋面将升高60米左右。

  •   发展趋势

      冰盖7科学家指出,格陵兰岛和南极冰盖融化的速度正迅速加快,成为全球的海平面上升的主要原因。

      由美国国家航空和航天局资助的科学研究发现,格陵兰岛和南极冰盖(icesheet)消融的速度,远快过高山冰川(glacier)和冰帽(icecap)消融的速度,这消融速度比预测模式所显示的还要快,成为促使地球海平面上升的主要因素。

      冰盖指的是面积达5万平方公里的冰层,这么大面积的冰层只有格陵兰岛和南极才有;而冰帽指的是面积较小的冰层,面积不及5万平方公里。

      该项研究由美国航天局喷射推进实验室与加利福尼亚州大学尔凡分校的研究组联合进行。该研究报告主要撰写人里格诺特说:“南北极冰盖的冰量远比高山冰川来得大,这冰盖将左右日后海平面的升高,这一推论并不令人惊讶。”他解释道:“令人惊讶的是,南北极冰盖溶化所产生的较大影响已经出现了。”

      此项研究依据20年来每个月的卫星测量数据和地方气候模式数字,借此了解南北极和其它地区冰川和冰帽的冰量流失情况。平均而言,格陵兰岛和南极每年流失4750亿吨的冰量。相比之下,在2006年的一次调研中,冰川和冰帽的冰量流失估计为4020亿吨。

      不过,这项调研的一大发现是,格陵兰岛和南极冰盖的溶化速度每年加快,这些年来每年的冰溶量平均都比上一年多363亿吨。冰川消融的加速幅度,只有冰盖的四分之一。

      里格诺特说,按目前冰盖消融的速度看,海平面升高的水平将比2007年联合国气候变化小组所预测的要高许多。

      该研究组在《地球物理学研究快报》发表的报告说:“报告撰写人的结论是:若目前冰盖消融的速度持续四十年,到了2050年,其消融的冰量将使海平面升高5.9英寸(约15厘米)。”

      报告补充道,冰川消融估计会使海平面升高8厘米、海洋温度升高估计会使海平面升高9厘米,三者加起来,海平面升高幅度将达32厘米。

  •   成冰因素

      1. 成冰作用和冰晶组构:大陆冰盖的成冰作用是在没有融水参与(仅在固相和气相条件)下进行,称为冷型变质成冰作用,或干燥型变质成冰作用。成冰过程中,以沉陷和凝华再结晶作用为主。形成的冰叫原生重结晶冰,这种冰,气泡很多,颗粒较细(1~3毫米)。干雪相成冰的时间远比温性冰川长。温性的苏厄德冰川约在13米深处粒雪变成冰的时间仅3~5年。格陵兰的赛特冰川,在66米深处,成冰时间达100年以上

      冰盖2。南极东方站在100米深处,成冰时间竟高达4000年。

      冰晶组构指气泡的形态和分布,晶体大小、形态和方位。冰晶组构发育主要受应力类型、总应变和温度控制的假设,已在许多钻孔冰岩心的组构研究中,得到满意解释。一般认为多极大型组构在远低于融点的冰内不能形成,但是,在南极伯德站2164米深钻孔内,约在650~974米深处冰温为-28℃,冰组构有2或3个极大型组合。在大陆冰盖各处,在5米深处与粒雪变成冰的深处之间,晶体以不变的速率生长,此后,晶体生长速率随着温度的下降而降低。很多钻孔的研究表明:在现代冰与最新冰期冰的边界处,晶体尺寸存在明显的缩小现象。在未受应变的冷性冰川冰中气泡一般呈球状,气泡的形态随冰变形而变化。但是,在巴恩斯冰帽边缘,最新冰期的冰川冰的特征是含有小的球状气泡,即使在邻近冰床处,经强烈剪切的这种冰川冰内的气泡亦呈球形。

      2. 物质平衡:高纬地区的气候特征是气温很低,南极东方站附近年平均气温为-56℃,最低气温记录达-88.3℃。年降水量少,南极约一半地区的净积累量少于10厘米/年。因此,大陆冰盖的积累量小,消融弱,物质平衡水平低。这些冰体比较稳定。据估算,南极冰盖的年物质平衡变化范围为相当于水深+80~-30毫米,但大多数估算为正值。南极冰盖物质消耗主要是冰架边缘的不断崩解和强风把大量积雪吹离冰盖。

      冰盖3因为温度低,消融局限于有利部位,在物质支出中居次要地位。格陵兰冰盖物质收支估算亦为正值。平均总积累量为446立方公里/年,总消融量为315立方公里/年水当量。根据127个站点资料,通过纬度、经度和高度分析,表明格陵兰北部年积累量为15~50克/平方厘米,自东北向西南渐增。格陵兰南部最高值(超过90克/平方厘米水当量)出现在东南部沿岸,向西减小。

  •   格陵兰冰盖

      形成于第四纪,在距今约18000年时冰盖面积比今面积大7倍,并与当时北美冰盖相连接。格陵兰岛大部分位于北极圈内,全岛面积为 218 万平方千米,是世界最大的岛屿。格陵兰冰盖面积约180 万平方千米,平均厚度约1500 米,最大厚度达3200 米,占世界冰量的7%~9%。它由南北两个穹形冰盖连结而成,冰盖边缘一直覆盖到海边,有许多冰川的冰舌伸向海面,在若干峡湾中形成许多冰山。西格陵兰的一些冰川,如雅各布港·伊斯伯依冰川,每年流动速度达7000米,是世界上流动最快的冰川。

      冰盖6冰盖中部西侧的冰层表面每年以0.1米的速率在增厚,而东侧则稍有变薄。冰盖西海岸的消融区冰面每年变薄约0.2米。格陵兰冰盖显示更强的极地海洋性冰川性质。冰盖西南部沿海的年平均气温高达 1 ℃ ,1月和7月的平均气温分别为-7.8 ℃和9.7℃,年降水量达1000毫米,雪冰积累量和消融量都很大。冰盖内部的情况显著不同,年平均气温约-30 ℃,2月和7月的平均气温分别为-47.2 ℃和-12.2℃,年降水量仅200毫米,气温低、降水少,雪冰积累量和消融量较小,成冰过程缓慢,如世纪营地 (北纬77°11′,西经 61°10′)成冰过程需125年。

  •   概述

      在气侯寒冷、有一定降雪量的两极和高纬地区,除少数山峰突出冰面外,几乎全部地面为厚达数百米至数千米连续的冰所覆盖。大陆冰盖中心部分为积累区,边缘为消融区。冰盖冰几乎不受下伏地形影响,自中心向四周外流;边缘部分自陆地向海洋伸展,一部分漂浮在海上的冰体称冰架(陆缘冰)、冰棚或冰障。冰架冰断裂、崩解后入海形成冰山。在北极和极区附近岛屿上,

      冰盖1形态和特点与大陆冰盖相似的、但规模小得多的冰体称为冰帽或冰穹。

      地球上现存的大陆冰盖有南极冰盖和格陵兰冰盖。这两大冰盖约占全球冰川总面积的97%,总冰量的99%。南极冰盖总面积为13980000平方公里,占全球冰川总面积的86%,总储水量为21600000立方公里,占全球冰川总储水量的90%。南极冰盖的平均厚度约为2000~2500米,已知最大厚度为4267米。若整个南极冰盖融化,将使世界海平面上升约61米,即使扣除南极大陆的均衡恢复,海平面也要上升约40米。

      横贯南极的山脉把南极冰盖分为具有不同特征的两部分:西南极冰盖大部分地区,底部位于海平面以下,即使冰全部融化,陆地均衡回升后,地面仍在海平面以下,这部分冰盖称海洋冰盖。西南极的大部分冰通过罗斯和龙尼冰架入海。东南极冰盖拥有南极冰盖全部冰量的80%以上,是一个最大高程超过4000米的穹状冰体。除个别小范围地区外,下伏基岩均在海平面以上。格陵兰冰盖总面积为1802400平方公里,总储水量为2340000立方公里,如果全部融化,将使世界海平面上升 7米。格陵兰冰盖的平均厚度为1515米,靠近冰盖中心的最大厚度为3408米。格陵兰冰盖最高点海拔3157米,平均高度2135米。

  •   自然特征

      1. 冰盖温度:根据观测资料比较,格陵兰和南极冰盖许多地点的年平均气温和10米深处的粒雪温度差仅仅在2℃以内,一般趋势是粒雪温度略低于气温。这种情况也只有在最高气温低于0℃的地区才会出现。根据极地冰盖和冰川中温度测量,南极伯德站、和平站、劳冰穹和加拿大北极区的怀特冰川底部冰温均处于融点。冰架底部温度等于海水冰点,冰架底部热通量取决于海水温度、盐度和冰架下海水的环流。因为冰架由冰盖补给,因此,冰盖内温度分布也影响冰架的温度分布状况。

      冰盖42. 冰盖运动:冰盖与冰川的力学性质没有本质的差异,因此,除了明显的差异(如谷壁对冰川运动的影响)外,冰川运动一般理论仍然适用于冰盖。

      3. 冰盖深钻孔冰岩心的信息:降水中氢、氧的重、轻原子的浓度比率取决于温度。因此,冰岩心中同位素比率随深度的变化可以用来解说过去的温度变化,这样的气侯记录对于检验气侯变化理论和冰期成因是必不可少的。现有的冰岩心分析已提供了最近十多万年来最详细的气候信息。400多米钻孔冰岩心分析获得的最近的12万年来的气候记录。冰岩心中还包含少量从大气散落的各种物质,如海盐、花粉、风吹尘埃、火山灰、外层空间物质(陨石等)和自然污染及核试验的痕量元素。工业时代前的痕量元素的浓度可以测量,把它与现在值比较,便可得到世界范围污染物质扩散的信息。有些散落物表现出明显的季节变化,如微粒浓度、痕量元素(Na、Mg、Ca、K、AI)和极地雪中氧、氢同位素比率等。根据这些变化的资料可测定冰的年代和过去的降水率。火山喷发后散落物与气温变化还可以通过冰岩心分析加以测定;冰内气泡提供了过去成冰时大气的样品。

学科中心